17,449 research outputs found

    Reduced pattern training based on task decomposition using pattern distributor

    Get PDF
    Task Decomposition with Pattern Distributor (PD) is a new task decomposition method for multilayered feedforward neural networks. Pattern distributor network is proposed that implements this new task decomposition method. We propose a theoretical model to analyze the performance of pattern distributor network. A method named Reduced Pattern Training is also introduced, aiming to improve the performance of pattern distribution. Our analysis and the experimental results show that reduced pattern training improves the performance of pattern distributor network significantly. The distributor module’s classification accuracy dominates the whole network’s performance. Two combination methods, namely Cross-talk based combination and Genetic Algorithm based combination, are presented to find suitable grouping for the distributor module. Experimental results show that this new method can reduce training time and improve network generalization accuracy when compared to a conventional method such as constructive backpropagation or a task decomposition method such as Output Parallelism

    Task decomposition using pattern distributor

    Get PDF
    In this paper, we propose a new task decomposition method for multilayered feedforward neural networks, namely Task Decomposition with Pattern Distributor in order to shorten the training time and improve the generalization accuracy of a network under training. This new method uses the combination of modules (small-size feedforward network) in parallel and series, to produce the overall solution for a complex problem. Based on a “divide-and-conquer” technique, the original problem is decomposed into several simpler sub-problems by a pattern distributor module in the network, where each sub-problem is composed of the whole input vector and a fraction of the output vector of the original problem. These sub-problems are then solved by the corresponding groups of modules, where each group of modules is connected in series with the pattern distributor module and the modules in each group are connected in parallel. The design details and implementation of this new method are introduced in this paper. Several benchmark classification problems are used to test this new method. The analysis and experimental results show that this new method could reduce training time and improve generalization accuracy

    Two-body scattering in a trap and a special periodic phenomenon sensitive to the interaction

    Full text link
    Two-body scattering of neutral particles in a trap is studied theoretically. The control of the initial state is realized by using optical traps. The collisions inside the trap occur repeatedly; thereby the effect of interaction can be accumulated. Two periodic phenomena with a shorter and a much longer period, respectively, are found. The latter is sensitive to the interaction. Instead of measuring the differential cross section as usually does, the measurement of the longer period and the details of the periodic behavior might be a valid source of information on weak interactions among neutral particles.Comment: 5 pages, 5 figure

    Superconductivity mediated by the antiferromagnetic spin-wave in chalcogenide iron-base superconductors

    Full text link
    The ground state of K0.8+x_{0.8+x}Fe1.6+y_{1.6+y}Se2_2 and other iron-based selenide superconductors are doped antiferromagnetic semiconductors. There are well defined iron local moments whose energies are separated from those of conduction electrons by a large band gap in these materials. We propose that the low energy physics of this system is governed by a model Hamiltonian of interacting electrons with on-site ferromagnetic exchange interactions and inter-site superexchange interactions. We have derived the effective pairing potential of electrons under the linear spin-wave approximation and shown that the superconductivity can be driven by mediating coherent spin wave excitations in these materials. Our work provides a natural account for the coexistence of superconducting and antiferromagnetic long range orders observed by neutron scattering and other experiments.Comment: 4 pages, 3 figure

    The effect of swing leg retraction on biped walking stability is influenced by the walking speed and step-length

    Get PDF
    Swing Leg Retraction (SLR) is observed in human walking and running. Previous studies have concluded that SLR improves the stability and robustness of biped walking. But this conclusion was based on analysis of robot models that can only walk at a very small range of step-lengths and slow or fixed speeds. By contrast, humans can walk with a large range of speeds and step-lengths. Moreover, human walking patterns have a special feature that has not been considered in the previous studies on SLR effects: At a given walking speed, v, humans prefer a step-length, s, which satisfies the power law, s-v β . Therefore, previous studies on SLR can't tell us whether their conclusion will still hold in the full range of human walking patterns (i.e., various walking speeds and step-lengths). This is the question we want to answer in this paper. In this study, using a simple biped model, we studied how the SLR affects the walking stability in the full range of human walking speeds/step-lengths. Preliminary analysis of both models suggests the same conclusion: (1) SLR improves the stability more evidently in human-preferred walking patterns than in other walking patterns. (2) In walking patterns that are very unlike human-preferred ones, the SLR improves the stability very little, or even deteriorates it drastically. Therefore, the new finding of our study is that how the SLR affects the biped walking stability depends on the walking speed and step-length. SLR does not always improve the stability of biped walking

    Fast walking with rhythmic sway of torso in a 2D passive ankle walker

    Get PDF
    There is a category of biped robots that are equipped with passive or un-actuated ankles, which we call Passive-Ankle Walkers (PAWs). Lack of actuation at ankles is a disadvantage in the fast walking of PAWs. We started this study with an intuitive hypothesis that rhythmic sway of torso may enable faster walking in PAWs. To test this hypothesis, firstly, we optimized the rhythmic sway of torso of a simulated PAW model for fast walking speed, and analyzed the robustness of the optimal trajectories. Then we implemented the optimal trajectories on a real robot. Both the simulation analysis and the experimental results indicated that optimized torso-swaying can greatly increase the walking speed by 40%. By analyzing the walking patterns of the simulated model and the real robot, we identified the reason for the faster walking with swaying-torso: The rhythmic sway of torso enables the robot to walk with a relatively large step-length while still keeninu a hizh sten-frenuencv
    corecore